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SUMMARY
Computation of the thermal stresses in a nuclear rocket

is of importance from the standpoint of ensuring the neces-
sary strength during reactor operation. This information
is necessary to determine the control problew of a nuclear
rocket.

An increase of hydrogen flow (coolant flow) is
desirable in operating a reactor so as to eventually lower
the steady~state core temperature. This increase of hydrogen
flow not only introduces a higher temperature gradient in
fuel element but also takes a higher heat transfer coefficient.
Thus, excessive hydrogen flow at the rated full power con-
dition yields the most critical thermal stresses.

-

The equivalent one-dimensional approach for the

or is

ot

transient heat transfer problem in a nuclear reac
discussed in details. .From this approach, the temperature
distribution of fuel element and coolant channel are
obtained in simple form and with sufficient accuracy.

The transient thermal stresses are proportional to the
difference of temperature between the fuel element and
coolant channel. The analytical solutions of the thermal
transient and stresses are given for a sudden change of

the hydrogen flow., Prom several numerical examples, it is




shown that the transient thermal stresses can be much
higher than the steady state full power thermal stresses.
The maximum transient to steady-state full power thermal

stresses should ve limited to a proper ra

the design of the reactor is within the margin of safety.




(1) Introduction

The steady-state thermal stresses zare nproportional to the
power density for a given geometry of the core. Due to a sud-
den increase of hvéroeen flow, the transient thermal stresses
¢an be much higrer than the s‘eadv-state full power thermal
stresses durineg a period of time. If the rated power of a
reactor increases. the vower density zlszo increcases while
the size of a reactor only increases sliphtly. Thus the
ratio of *transient to steady-~stete full power thermal stresses
is very much limited if the design of the steady-state thermesl
stresses 1s near the margin of safety. The modern control
theory civeg a method of limitineg these thermal stresses by

cqptrolling the hydéromen flow correctly.

The study cof optimum control was concentrated on lumped

o]

rarameter processez :described by ordinary differential equa-
tions. Thus the common practice of intrcducing a state vari-
able constraint on the optimum contrel of nuclear rockets
is to limit the temperature rate or the derivative of tem-
perature in the time domain for the purpose of limiting
thermal stresses,

It is found frorm the present study that the spatftial
temperature gracdients are more important. This 1s based on

the study of thermal stresses of a nuclear reactor by intro-

ducing a distributed parameter model. For eggmple, if
there is a sudden increase of hydrogen flow at the steady-
state conditions, it 1is found that the criterion for




limiting the thermal stresses is to constain the product of
the heat transfer coefficient and the difference of the
temperature of the fuel plate and hydrogen coolant.

The present interest is to examine the transient thermal
stresses in slab or cylindrical geometry due to the increase
of hydrogen flow under full power condition. With this
information it is hoped that the transient thermal stresses
in the fuel element could be controlled as steady as pos-
sible while subject to a time varying increase of hydrogen
flow under full power condition.

A historical review is given in Appendix A on the
subjects of heat transfer, thermal stresses, optimum control
in distributed parameter systems and the optimum control

with state variable constraints.




(2) Types of Reactors

The types of reactors which can be considered for a nuclear
rccket are those with either a solid core, liquid core or gaseous
core. OSince a liquid core reactor requires a more complicated
control system and since the technology for gaseous core reactors
(1) is far behind at the present time, the solid core reactor is
most suitable for a space vehicle with a large payload in the
near future.

Three general types of solld core reactor are thermal,
homogeneous; thermal, heterogeneous: and fast reactors. In a
homogeneous thermal reactor, graphite or BeC may be used as the
moderator and the fisslonable material is mixed with the mo-
derator. The heat of fission is liberated in the moderator-
fuel region and is removed by hydrogen propellant. The highest
operating temperature is limited by the material of the moderator.
In comparison with BeO graphite possesses

(1) Dbetter mechanical properties at high temperature,

(i1) higher melting point, and

(iii) poorer moderating power.
However, the specific impulse of hydrogen is proportional to the
square root of the exhaust temperature. Very high temperature
1s required to obtain high specific impulse. To withstand such
(1)

an extreme temperature graphite is really the only contender

(2) (3)

Most authors propose the core of a homogeneous reactor for

space flight should have a graphite matrix (2) (4) (5) im-
(5) (1)

pregnated with U235. The atom ratio of carbon 1is




about 500 which ensures the criticality of the reactor and
the retention of the properties of graphite in the fuel
region. For this atom ratio, the estimated size of reactor
including reflector is about 4 ft. in diameter and 4 ft. in
height with 209 void as given in Appendix B. A & inch
BeO reflector surrouncs the surface cf the active core. Two
feasible constructions are suzgested as follows:

(1) A right circular cylinder composed of a homogeneous
graphite-uranium matrix in which circular holes are drilled

(2)(6)

parallel to the axis for coolant flow

(ii) Coolant channels =re rarallel to the axis of the core.

A number of plate type elements (composed of C-U matrix) are
bound together tc form a unit. A number of these units forms
a2 cylindrical core(u)(é). The second type construction is
considered here because of the simpler geometry and mathe-
matical analysis.

The Gesicn temperatur. of mrephite is ahout 5.000°R. The
temperature of hviror~en at c¢xit should, therefcore, be around
L 500 OR, The inlet temperaturce of hydrogen 1a taken as 180
OR which is slichtlv hicher than the critical temperature (8)
(60°R). For plate type construction, the thickness of the
fuel element can be calculated by assuming that,

(1) The number of coolant channels 1is 212 for compromise
of structure ard heat transfer prcblems, and

compromise of volume of reactor

1421
no
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(ii) The voic i
due to criticality and heat transfer problems. The thickness

of a fuel eiement and the width of coolant charnel are ob-

tained from Appendix B as 0.12 in. and 0 .03 in., respectively.
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This value is in the range given by Levoy and Newgard as
reasonable. It is found that the thickness of the coolant

channel is smaller than that of a fuel elenent.



(3) Heat Transfer Problems for Nuclear Peactors

The heat conduction pattern is approximetely similar from
channel to channel if the power generation is uniform in the
radial direction and if the heat escape from the outer surface
is negligible. The core can, therefore, be represented by a

unit plate. Thus the heat conduction equation for the fuel

element 1is given as(g)
VRVT,(F,7) + P (F,1) = Cpa*TE(F,t), (3.1)
3T
where T, = temperature distribution in a fuel element,

P = heat source per unit volume per unit time,

]

k thermal conductivity of the fuel element,
P = density of the fuel element,

C = specific heat of the fuel element,

=1
[}

and position vecter .
The differential equation which governs the heat flow in the
coolant is the foldlowing energy balance (see appendix C).

The hydrogen coolant fiows in the z direction axlally.

A *p T (z,1)] + C_U()AT (z,1) = Dh(x) [T, (%, 1)
p [} N !

f-_"T ) y &
- Te(R, 1)1, (3.2)

bulk temperature of the coolant, assumed uniform

=
o
1)
]
o
3

2
it

in x direction,

A = cross-—sectional area of the cooiant channel,

h(1) = convection heat transfer coefficient,
Cy = constant voluwme speciflle heat of coolant,
C = constant pressure specific heat of coolant,
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D = perimeter of coolant channel, twice the width of
fuel plates,
W(t) = mass flow rate of ccolant per channel,
P, = density of coolant,
R = position vector of the points on the interface
vetween the fuel element and the coolant.
The following properties for the reactor are assumed,
(1) Material properties are constant,
(i1) lieat fiow in thezaxial direction of the fuel elements
is smail, i.e.,a Ty, = 0, or VkV’f‘U > kéi- T
g2 ° ax2 "
(i1i) Small amount of stored energy in hydrogen as coolant,
i.e., Cv is negligible.

Under the above assunptions
balance equations for the plate-t
in Figure 1) can be written as

2
ké—— T(x,2,7) + P(x.2,1)
ax2 "

C?W(T)
= 3z

with boundary conditions

2

o) .
- TG(z,r) = Th{t)[T

the heat concduction and energy

ype fuel element (as shcwn

= o0%- Ty(xsz,1), (3.3)

0T
5z, 1) -Te(z,1) 1, (3.4)
= 0 , (3-5)

i)

Iz

[TU(bgzgt) - TG(Z,T)],

(3.6)



'I'G(Z,T) = TGO 3 (3.7)

]
it
(@]

and the initial condition

()

Tn(x,z,r)l T

i

=0

U(X’Z’o) P) (3.8a)

or TG(Z,T)‘ Tg(2,0). (3.8b)

=0

Equations (3.3) through (3.8 give the heat transfer
characteristics of the reactor. Irn order to obtain a meaningful
solution an inductive approach is used to solve the problem
which follows.

(a) ™wo Dimensional Approach fcr Steady-State Solutions

The %temperature cistribution is sought in a steady state

condition under constant power input Po‘ Let T..n and T

Us GS

be the steady state teuwperaturs of the fuel element and the
coolant,-respectively. The differential equation can be ob-
tained by setting V(1) = WO, h(t) = ho and neglecting the

transient term in the original equations. Thus, we have

2
K T (x,2) + P o= 0, (3.92)
3x2
c i Tag(2) = Dhy[Tyg(e,2) - Tagl2) ],
3z
(3.9b)
with btoundary conditions
L Ty (X52) =0 , (3.102)
ox =

x = 0



& o (x.2)
U
X

and

= T . (3.10c)

Tas(2) “co

z =0

m

The sclution for this straignht forward problem is

P

o DbPO
TUS(X,Z) = - X

2

+ P b(—+ =) + T, +

- 0 “Go P 2
2k 2k ho ngo
(3.11a)
DbPO
and TGS(Z) = TGo + - zZ . (3.11b)

(b) Equivazlent Oune-Dimensional Approach for Steady-State
Solutions

o104 agbove can be reduced

[

The nwoundary value problen ment
to & one~cimensional prociblem vy intersratbing
zero to b and using bouncary conditions (3.10a) and (3.106b).
The terperaturs distritbution in the » direcction cdoes not appear
further. Thus the Temperaturs distributicn o the interface

becomes our only interest. The differential equations becomne,

T i Ty ""~~.Z T = P R R
‘Q[J—US(L"Z) “u»’:)( ).! ~Ob 5 (3 123)
3 . .
J 2. m { e = m {3y o - m o
CS‘\.OqV _.'.GS\L-) L'L’lol_-LUS(\U_*’-‘) "\S(Z)] " (3'lab)
With the boundory condition
"o (2) =T, . 3.1
(2) e (3.13)



The solutions of this boundary value vtroblem are

P b Dp?
' le) EREe)
Topg(b,z) = —— + T, + z,
h 7 C W
o g0
DbP
and T.(z) = T, + © 5.
Go [$1e C W
g0

10

(3.14a)

(3.14p)

(¢c) Two-Dimensional Approach for “ransient Solutions

We seek the soclutions of 2 reactor problem which changes

from the steady state power level P _ to

the flow rate of coclant changes from wc

value problem can be expressed zs

32 ) 5
K~ TU(A;ZJ ) + P = pC

ax? 3T
' .1§_ oo = m ; - ™ - -
Lghaz ,G(z,t) Dh ;U(bfzﬁr) Lﬂ(a,t)]

a .
—"TG(X:ZJT) =0 ,
X
x=0
c m (v - hs"rﬁ o i}
--1U\A,u,1) s b,z,1) - ;G(z,r)],
N 7
o X ¥
x=t
jlfw(z T)‘ = T(‘;,\
[N Ui 5

a rew level P, while

to W. This boundary

(3.152)

(3.15b)

(3.1€a)

(3.16b)

(3.16¢)
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anc¢ the initial corn<ition
P n . Db?o
JU(K;}’,T) =-— + DO‘O("‘" + '——‘) + TGO + Z s
ok 2k 9! C.W
-0 e} =0
T"./
(3.17=2)
DbPo
or T.(z,1) = Tn, * 7. (3.17b)
G $ie] C o
=0 T 0

This boundary value problem may be sclvec Ly using the

o]
o

Lzplace transform in z. The solution may be obtainew in couble

_J

series forn. Because of the complicated algebraie form we do
not intend to so further with this scolution.

The following cne- dilmensional epproach for transient
solutions ~ives & nuch simnler form which is sufficiently
accurate.

(¢) Zqguivalent One-Dirensional Azproach for Transient
Solutions

fter integrating Tauaticn (3.152) in the x-direction
from zero to b, applyins tae boundary conditions (3.16a) and

(3.16b), and lettinge

b
J Tn(z;z,r)dx
o Vv )
n(z) = - (3.19)
bTU(b,Z T)

the following eguations are obtained.

~~

4

e
!w

h(o)[Ty(b,z,1) « To(2,7)] = Pb ~ pChn T(bs2,7),

b3
(5]
~

(3.19a)

() To(z.t) = Dh(r) [U(b.z 1) - Ta(5,1)T, (3.19b)
& az &



! . 12
| with the boundary concitioin
#
oo 3\ = ™
,:(;(Z_.,Tj “Go ¢
tg=0
an¢ the initial condition
bP oh?
Tu(052,7) = Tag t © 4 '° z (3.21a)
h Cgll
=0 o
LY
T 7 = T + . b
y or 1G(L3T) luO Jy Z (3 21;)
=0 =0
8y aprlyineg the Leplace transforr in z end letting h(rt)
‘ () ! and n(z) = n, one obtains (see Arrendiix D)
t
n
. Pb . hB o
To(Z,8) = T, + -2 8n - 2 BN .0y ] n(82)%1_(2/B75E)
7 \ p
h 3 P hos no1 Bt
b .
S B ?
» (1 - =2 & 7 (%7 1_(2/BZRD)] (3.22a)
3 h_n=1 ﬂt o
o)
and
n[T. (b,Z:t) -~ T (7,£)] = ™o = P be P00 (E .Byy (a/87RE)
U &, - e JdT - ¢ ) e LNT
o0
n
-G co 9
, T o 2007 — - .22k
Fa e = Y (ED T (AT (3.22e)
.LC‘ ALO)- }]zl RN
where
7 = B2 £ = —t g = 2 (3.22¢)
Cg oChn v
ar.d T o= rodified fessel Tunction
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(e) Perturbation flethoc for the Transient Soluticns
We can assurme the temperature distribution to be the sum
of the steady state temperature znc a perturbed temperature,
ie.s
T = Tio + T

U US u

3 m = T m
anc iG = -es + l‘_/)_ )

There Tu an.. T_ are the perturved temperatures of the fuel

anc coolant. respectively.
(1) If the flow rate of coolant is kept constant and the

povwer 1s aropped sudcenly. we have,

T = W
1) LA
and h(t) = ho .

Let us assume n(z) = n to he constant. Subtracting the

Eguations (3.12) frowm Tquations (2.19), anc letting L = g,
e pChbn
Dz - ; .
— = 4, one obtains
Ce
3 v — f - + [ra - +
—-iu(b,z,t) = mho[Tu(L,Z,u) “Ig(;,t)] «b(PO«P),
3t
(3.23a)
W o (2,8) = n [0 (b2 t) -T (2,6)], (3.23b)
Oue "5 77 o-"u ¢
with the bounuary concdition
TQ(Z,t) =L (.214)
Z=C
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and the Initial condition

= 0 5 (3-258-)

or T (Z, t)‘ =0 .

02

(3.25b)

This boundary value problem is readily soclved by applying the

Laplace transform in t. The solution shown in 4ppencix L is

P b
. =1y o :
T;(b,Z,8) = - [TGO + 1 {1 + BOZ)J
3 ﬂo o
°__g
b(P ~P) h T s+h
- 02 1 81— 9 171 . (3.26a)
s(s+h ) s
Po‘b b
or TU(b,u,t) =7, + —(1 +3 Z2)~-(P ~P)—[h t
20 n o o n 0
o) e}
-8 Jeh H @ nt s
e OO T (ne1) (997 1 (2VB_ZR_E) , (3.26b)
n=1 B 7 o
o
ho
where BO = 5~ .

It should ve noted that since the power term here is linear,

no approximation has been nace for the above solution. The

solutions still hold for larse perturtations.

Y

e

(ii) I the power of the re.ctor is kept constant and
the flow rate of coolant increases suddenly, we have

h =nh + Ah

and W = wo + AW - (3.27)




15:
Furthermore, we assume that the ciiange of flow-rate is small
enough s¢ that the cross proauct terms of perturbations can be
neglected. Substituting Equation (3.27) intoc Lquation (3.29)
subtracting Equaticn (3.12), and using the relation in Equa-

tion (3.14). one chtains

2 m . m — . Ah
-7 (b,2,8) =-h [T (b,Z,t) - T (Z,£)] -(Z)bP, »
at g h
0
W 0 (7,6) = h [T (b,2,:) - T.(Z,8)1 + P b(2P:8%), (3.28a)
O, & c-Tu Jas o
34 h W
Q O
T
where g = 22 T = . (3.28b)

The heat transfer coefficient and the flow-rate of coolant are

(‘!r\\‘/'!'!
L ) -

approximately related by

uy
= (3.28)
h0 B
Thus N 5.8 X
hg W
and ML _ Ay o o O
ho to ko

If the term (QE»— AE) is negligible Equations (3.28) are equi~
ng W

.. : 0. .0 - ..

valent to Eguations (2.23) provicded that

(p_ - Pt th P Lo

or 1 -
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Therefore, a small increase of W or h gives a similar effect

as a small decrease 1in power level,
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v

(4) Thermal Stresse

<
<

¢

(a) General Thermzal Stresses

The general form of thermcelastic eguations has the
strain term in the energy eouation and the inertia terms in
the equations of motion (see Appendix F). Fortunately, in
most engilneering applications; such as thermal-stress for
the fuel element of a reactcr, it 1is pcssible to disregard
these coupling terms. Thus. the general thermal-stress prob-

lem becomes the quasi.-static thermal-stress problem by simply

dropping these coupling terms. The uncourled system may be

o3

consldered as two distinct problems, a protlem of heat trans-
fer and a problem of quasi-static thermoelasticicy.

(b) Three Dimensional Quasi-static Thermal Stresses

(i) Ye are interested in solving the quasi-static

three dimensional thermal-stress rroblem. If the fempera-

D

ture distribution is assumed tC b

functions are tc¢ be cetermined for the thermoelastic problem:
P

6 stress components: “xx, vy, “zz, “xy, %yz, %zx.
L 4 3 s

Strain components: fxx. fvy, fzz, ®xy, fvz, “zx,

N

3 displacement components: u, v, Ww.
There are, throuchcut ithe body, the foilowing fifteen equa-

tions to be satisfied

3 equilibrium equations: Eq. (G.1)
6 stress-strain relations: Fa. (G.2)
€ strain-displacement relations: Eq. (G.3)

wlith prover boundary conditions.

known the ifcllowling fifteen




These differential cquaticns are given in Appendix G.

(ii) It is sometimes convenient to express the re

lations

in terms of stresses. In exaninine the fifteen equatlions men-

tioned, the cisnlacement and strain variapies can te eliminatec

azs shown in Appendix 5. The resultant relatloms are ca
k) - .
competibility conditions(*“) of the thermeizctic prohl
~ 2 2
a 1+
(1 + \))Vzoxy +228 B (Vg2 4 3 )(T"Tc> =0 ,
=t ax? 1-v 3K~
340 + 2 .
(1 + v)vzayv +5.= 0+ aE(}«XVZ + 27 ngO) = 0
< y* 1w ay?
5 2¢ NPRE 2 _
(1 + Vvde, #2384 n(de2 ¢+ 2y ) =0,
€ ] -
3z“ 1-v 9z~
NZn B 2
(1 + v)v2o _ +2=%— + ot Y (rr) =0,
X3z LR A
::20 '\2
(1 + v)VZGyY +3 2 4 B (T-T ) = 0,
7 3vax 3y3X
2n 2
and (1 + v)v2o_ +28 4 op (7T ) = C
zy ] c
Y 373y 32y
32 N2 2
where 72 = ( + = + ~n:)3
ax? sy? ol
C = 0.y Ty c,,

1402y therrmal expansion.

1led the

en

(4.3)

~~
B
£
~

(4.5)

(4.6)
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The solution of the thermal stress problem must satisfy the
equilibrium equations Eg. (G1) with the precper boundary con-
ditions. The stress components in an isotrecpic bocdy nust
also satisfy the six eguatiens given above.

(i1i1) Consider a plate-type fuel element cf constant
thickness 2b as shown in Tigure (1). The fuel element 1s
free of surface traction and the temperature varies in the

x-Girection onlv, ie., T = T(x). It is reasonable to sup-

n

pose that under these conditions the stress conmonents will

be of the frollowing form.

Oz T %9y = £(x) s (4.7)

and
= = = = R
Oxx “gx “yx~ Cazy oo (4.8

Fouation (4.8) helds because no surface traction aopears
on the nlanes » = :b. Since the plate is thin, the region

is extended to interior planes. Substituting into the equi-
librium equation= UTg. (£l), shows that these stresses sat-

isfy the equilibrium eouatiors. Substituting into the com-

patibility conditions, Fao. (4.1), (4.2), or (4.3), we obtain

32

3x?

{ren) + “Z[r(a) - T,] ) =0, (1.9)

for any one of the three eguations.




Lo

& ! )

Rr e 3

oy p
D

/. s,
¢ .
N .f..— /
Y 5
%
5,
SN
/w
€ wh %
o S, e % wd
*. f
.\ woRN
\ NN
hi]

Wi od
‘.. 5, £h
N
it oot
- by
N R
.

=
[

LRV ASS
] 1
ey m_ﬁ:e o
- e o
T

l‘;’ =
Lo 2
p

-

&

Lo

eull




P

20

The seclutions of Egs. (4.9

= T{x) + ¢ + cox . (£.10)

where c¢; and c, are constants to be determined by the boundary

conditions. The resultant force or the moment per unit of

lenzth produced bv Gyv or o, vanishes over any plane y =
" “
constant or z = constant, resvectively, which requires that

)
=
1
jo
P
]
O

fh (Tl_"'.ﬂ.'fl = " X0 _ Gy o= f

4

N ]

-

1
Q

Tt

<

nA

~

(4.11)

Thus, using Fguatiorn (F.10) we have

- I }: - an -b ]
2o oY m(x)Ex o+ ey IU3x ¢ e, T xéx o= 0, (4.12)
1-v -¥ -B b
and
CZE b - o .b - .12 .2 - u
- SV oy (x)dx 4 ¢p fT xéx o+ ep 77 oxcdx = 0 . (4.13)
i-v ~D o) 1

Solvinz for ¢y ard ¢y, , one ¢btaing

3
]

ot ek mixyax | (4.14)

and Cp = - [0 AT(x)CX. (£.15)
21\)3 = ?"\)
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2
Then the stresses are(l“)
‘r‘
o = o =2 raox)+ P pixyex + 3 sP x7(x)axd.
2z YWoooaioy 26 -b 2p3 -b

(4.16)

It is found that if the temperature distribution is symmetric,

the constant ¢, will be zerc. Thus, the stress reduces t

F=T(x) + X /P m(xyexd (4.17)
b o©

where T(x) = T(-x).
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() Sudden Increase of Flow Yate at Constant ™ull Power

(2) Solutions of Temperature Distribution

A reactor orverating at full power PO under steady state
condition has a ccnstant ccolant Tlow rate wo. This flow
rate suddenly increases to Wy, the numerical value of which
15 cetermired from the eaquation (3.28) by settineg h = 1l.1lh..

The differential eauations of this particular problem are

siven in Equations (3.19), (3.20) ard (3.21) by letting h(t)

hy, W(t) = ¥W;. P =P eand n(z) n = 1. The solutions given

n
Pcb By Tt h,R s Bﬂ§
7 mo 4.82rg 7. mB1I-R1ve oy 170 (—t2) T (2V8
1o(Z,) =T, + h1{314 3 r(1 ’Oﬁl’pzqn\hlt) I (2 8§17h;t)
n
© z 2

B, h
e N R N A YA TEN | PRI )

h .
hy[Ty(5,2,8)-7,(Z.0)] = P_p{1-e®E M (1-—t)7 (2/877RTE)

hO
n
h.8g. = B,7.°
et Nt ] Sz o JETIIE
- § g LeBIm®Il - (5
0 n=1
& 1n
where 7 =22 ¢= 2, 5 =2
ng p b Wl

and In = modified Ressel function .




Tue to gymretry tre temrerature cof the

a parabclic distribution in the x direction

stresses oiven in fas. {(4.17) are
b
T:r
Cop = Tuo T O5 [am(x) + 1 o
© I3 lew 20
-b
where T(x) = L= A x2
AC,-Z = constants,
am
Thus —~= = «IAsX.
9xX

For this parabolic temperature distribution,

the maximum thermal stress occurs at x = b,

tensile if A, 1is positive

s = o . 20E?,
= o = 2
m Zu 3 l“‘\))
Z =7

where Zﬁ is the locat

tds

the thermal stresses fcr the above paraboeli

-
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he Temperature

fuel element has

PR
T

. The thermal

x)éx] .

(5.2)

we find that

This stress is

.on of the waxirum therral ctrcsses. Bince

¢ distrirution of

temperature can be related to the gradient of temperature at

the surface of tlie plate we can express Fe. (5.3) in the

followins “ecrm

oTb 3T
o = -2 R
B 3(1-v) 3x :

]
L}
o

(5.4)




The followine relation is ~iven ir Ta. (3.10b) “or the tem-—

perature gradient

37 i - - e .
= =it [Tylouz 6) o (2,90 . (5.5)
X = b
Z =7
r

The term hl[Tq(b;Zw,t) - Tﬂ(iq;t)l may be obtained from Equation

(5.1b) for the solutions. Thus, £g. (5.4) can be written as

g, = ;?—;Jj—*—{{l}l[i’tj(b;ﬁst) - TG(ZK,t)]} , (5.6)
[ L-v

where hl[Tu(b,Zn,t) - Ta(Z_.t)) is a constraint in determining

3

thermal stresses Gue to temperature distribution acress the

depth of the slab. 7The constraint 2y also b formulated as

-0 \)\ {
6 = SSid o, N ¢ max. R (5.7)
ot -
where 6 = b7 (k.7 . 6) - Ta(7 6] . (5.8)

Thus the zabove state variable constraint is the product
of the heat transfer coefficient and the difference of the
temperatures of the core and the rropellent.

(c) Fumerical Ixample

A numerical example is given here for the case in which
the heat transfer coefficient increases fron hy to hy =1.1 h,.

The physical parameters for this numerical example are (see

Appendix B):
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- 60 rlbm o - BTU

wo = 575 £sec per channell], ho = 0.82 [= Soc £t2 oﬁj ,
= 1

- 7 - hl 8 _6-6 — ~

hy = Llhg, W o= Wolpll = (1.1)08 Wo = 1.126W ,
(28)

_hi _0.902_, ¢, BTU v BTU
81 = & =537572-829 [sgronTe,) » O " 07 i, om) :
o vy B 29 % qop (logy (29

g ‘1b, OR- ’ K ,
. BTU (298 o, BTU
ko= 5606 [pn ¢ on) =0.02 [z e ol o
n =1, b = 6.005 [ft],
2 % 3 [rt] v ¥o.25,
W e D .. -ft 1lbm OR
2% = axial lcngth = 3 Lft], 2L = éi)— L.4 [ BTUm 1,
BL = 12.45, T”S = 4878.4 [OR],
x=0
z=2%

T = 14537.1 [°R].
’ z=2%

The thermal stress at stcady-state conditions 1s obtained

from Equations (5.6) and (5.1) &s

a _ Eblp
Ogs (Gm)t+w T 3k(1 =)
= 0.555(10) 73 (aEPy). (5.9)

Thus the ratio of thermal stresses is (at Z_ = 2L)

i




. )
The Dessel Functions are evaluated by a short table. '™~

(A0
(@)

¢}
“m 281L-h1t h v Bir. o
——— = 17 RRTRIb( AL Oy 7 (=Zlzy 1 (2/28,Lhit)
- Y‘=.’ v, N 41
GSS nO 61 n=4 T
- (3P 1) T (/3T )] . (5.10)
" h
(o]

The therﬁal stresses at exit and the temperatures com-
vuted by Equaﬁicn'( 1) are rnlotted vs the time ¢ showr in
Fie. 2. It is found that the inerease of thermal stresses is
about the same percentare 25 that of flow rate . which is apn -
roxirately 127 hirher if h; = 1.1 h,.

(¢) Some Obssrvations

The steady-state cdesign of a reactor ray be rated at o%
over i%ts allowable maximum thermal stress &t full power. ie.,

(100 + 9)% is allowed for the transient thermal stresses.

Thus
100+4+¢
= rm “Yy .M ;4 hd =G|
Cmax T Mot Ty(PaZys ) "oz 8 g 100 (5.11)

Under the full power steady state conditions the tem-

peratures T (b,7 .t) and T

Tk Z,_,t) take on some constant

G( m
values. These values remain approximately the same while
the {low rate and the heat transfer coefficient suddenly in-

crease from wo and h, to Wy and by resvectively.
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T {7 ~h ., ™ 7 T N € A AR Lo A +
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Combinin~ Fauations (5.2). (5.11) 2nd {7.12) one cbrains
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I 3 4
¢max e 0G40

-3
)
<
t
ot
5
({7}
Jade
o
o
ct

antanecus maximum stress occurs at the instant

=
D
o
Y
<
v
'::'
I
by
“w
~
i
P
£
Al

A el

0.8 0.8
. e e~ b {
oY N N \5.].".‘)
by virtue cof cguaticon (3.2¢). Trem Touaticon €5.15) one may

conclude that a sudden increas: of fler mav cause overstress.
The maximum flov ¥} is limited uv (M cuartitv eiven in

Fauation (5.15). Fe-erxamining 2quation (3.17) indicates thet

")J

immediate re

-~

‘uction of the furction ¢ iz net obisinable by
adjustine the other contreol verianlie P the power input to
the reactor.

The tempersture ratse in tire Gomain bv Fquation (3.1%4)

same numerical rumber aiven by ths term = (T-T.)  uhilch
contributes tco theo maxinum thermal s*tresgoes due to the in-
crease of hydrocen ficw., Thus the maximum of this thermal
stress can be at a %ime wher the tomperzture rate in the time

acomalr is zerc.
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(6) Shut-down of Power at Constant Full Flow

(a) The lieat Transfer Problem

A reactor under steady state conditions has a con-
stant flow rate wo. The power drops from a steady state value
Po to a new level P. The process dynamics are given in Equa-
tions (2.23), (3.24) and (3.25). The solutions of the problem
are showrn in Ea. (3.26).

(k) Thermal Stress due to Temperature Distribution in

x-Direction

Tquation (5.€) derived in Section 5 is valid here. The
value of hO[T,(b,?,t) o TG(Z,t)] can be ottained from Eguation
(3.220) by setting 8 = g, h = h,.

(¢) ilumerical Txamele

An example is given for a problem on reactor shutdown.
The power of the reactor is initially at a high level PO and
suGfenly dropped to a constant low level P whereas the flow

rate of coolant is lepnt ccnstant. The physical parameters

for this erample 3re

P=107°_, 20 = 3 [£t]
= axial length of the reactor,
" BTU .o b lbpy
= c.82 71 ; w2 2. o8 !
hy 82 YRy 551 5= .5 “sec per Channel],
=T mU
o, ¥y 2, ¢ ¥ oo.u7 (2R,
& 1bmOR bm
D ¥ 6rfe] o ¥ 100 2Ry
ft3
n = 0.005 [fe], no=1,
e ¥ 0.02 0], 1. = 100 leec].

sec 'ft °F
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(1) MNumerical results for th:ormal stresses due to tem-

perature variaticns in x-Jdirection

With the non~-dimensional time r/rf and t/&.as absissa,
the temperatures Ty and,TG at the exit z = 2L computed by
Equation (3.26), are plotted in Figure 2. With the same
absissa the thermsl stresses at z = 22 Jue to temperature var-
iation in x-Girection are shown in Firure lU. The Bessel
Functions are evaluated by tables.(13)(lu)

It is ohserved from Figure 4 {hat the thermal stress
decreases nonotcnically from the highest value; ie., the

value in a time interval

b4

steady state stresc, to a very smal
of about 11 sec. This stress wiil, tiherafeore, cause no trouble
to the reactor.
(321) HNumerical result for temperature variations in
z-direction
Several curves of temperature 7, vs z with different =

1
are plotted in Fiqure 5.
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Appendix A lilstcorical Review

(a) Heat Transfer

The determination of the temperature distribution in
a solid is a boundary value problem of heat conduction. The
heat conduction principle was first proposed by Tourier in

(A1)

1822. Awbery was the first to cerive the analytical

solution of 2 conduction problem of a solid with constant heat
source. An analytical solution was obtained by Faterson (A2)
for the conduction problem having a source term coupled with
temperature. In 1946. Carslaw & Jaeger (43) prublished a book
in which most of the conduction problers were systematically
discussed. PRecently several papers by Siegel (A4) (A5)
studied the heat transfer for fluid flicw inside parallel plates
and circular tubes under time and position dependent wall

temperatures. An example for a nuclear reactor was also given.

(86)

Doggett et al worl'ad on a nuclez>» rractor prchlem with

sinusoidal space and exponential time varying power generation.
Most of the solutions given by the atove authers were in a
complicated series form.
(v) Thermel Stresses

The formulation of elasticlity including the effect of
temperature variations was studied by Duhamel as early as
1835. However, investigzations on the effects of temperature
in the study of the inelastic behavior of raterial have begun
only recently. Therefore. the subject of thermal stresses
ranges from classical topics to modern theories which are
still in a tentative form. &. Timoshenko (AT) derived the

formulae for the thermal stresses in a uniform plate with a



ferential eauations. However, in nany encineerins applications,

one has to deal with distribtuted parameter systems. Butkovskiil

1 (ALT)

et a specified several optimal control problems and show-

ed one example which could ~e solved by Pontryagin's maximum
princivnle. Later RButkovskiil (a18) zave the optimal conditions
for a system described by nonlinear integral equations. The

optimal conditions for the controlled processes described by a

, \ . Al
hypervolic differential equation were civen in Egorov's (A19)

(26)

raper. Lure gave the optimal theorems for the MMayer-

Bolza problem in distributed parameter systems by the method

(A21)

of calculus of variations. Sirazetdincv developed the

maximum principle feor a systerm governed by a quasi-linear
first order partial differential escuation.

(d) State variatle constraints

(A22)

As early as 1937 Val=ntilne outlined prohlens

Wwith inequality constreints on the control variables. These

(A23)

problems were discussed by Breakwell in detail. In-

equality constraints on state variasbles of an optimal problen

(A24) (A25).

werc presented by “amkrelidze and Berkovitz

Recently, the necessary conditions for extremal solutions on

optimal programming protlems with inequality constralnts

were given by Bryson et al. (A26)

Solutions of these problems by the method of steepest

(A27) (A28)

ascent were proposed. Mumerical solutions are

obtained through the use of intergral penalty functions. A
more direct method was recently presentecd by Tienham and

Bryson. (A29)
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Appendix B Reactor CaXculati~ns for a "ueclear Pocket.

(a) Calculation of Buckling

Assumin~ that the atom ratio ‘*

for a reactor with spherical core, we have

The atom ratio can be calculated from the followine relations:

by — _]_-___ n i)
N = = Pehys (r2)
1z
1
Ny = —— oA (B3)
Uro?
U 235
P M
v=x (BL)
V.,
oo =(l-r ) p + Cp (B5)
C E
where Nn = numher of carbon atoms per urnit volume of core,
NU = number of U235 atoms vner unit velume of core,
A, = Avcwadro number .07 x 1023;

V = volunme of core without voicd,

V. = volure of core with vold,

v

M, = mass of V235 in volume V,

. = voic fraction (30, 207 (B6)
po = desitv of carbon, 1.6 [gg§] (B5) (B7)
p = densitv of U235,

U

p., = density of hydrogen,

5 = average dersity of carbon with vcid in the reactor,
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’ (B8)

Q)
3
w

Combinins Fquations (BE1)(B2) and (32) we have for a core wilth

no veidg, o~

nN
Ao}

3

2 M,
(9

The critical mass for a spherical reactor with graphite

V = 500. (BS)

et

J

core and Bervilium reflector is given by Hansen., G.E. et al
in LA21%1 p. 57, as about 30,000 grams. The RBe-reflector is

c

estimated to be 11 em thick.
Sy 230,000 em). (B10)

Sutstituting Zq. (BS) ard (B10) into (28) we have

e 0 n
v = so0 —<. . 38:900 _ 495 000 [em3) -
235 1.6

Thus the velume of core with veoid is-

0 s -
v, = v =2 = 478,000 3£ ¥ 506,000 [on3] -
) o 1.2¢8
C

Let R_ be the rzdius of the spherical core with the void and
=]
and without countine reflesctor. The reactor does have re-

tlectors.

...3.,:;’33 =V
- 8 \'4
-
PS‘¥ 2.3 lem] .

The correspcncding bare core can be found by adding the extra-
polation lengtls ), which can be ohtained from LA2141 p.53.
For the atom ratio c¢f 500, cne has

8 =21 ~27 =1 - 22, i




—

ro where T = Be~reflector saving = 11 [enm],
Solving for *, we have

A= 3

<

[em].

The total radius of the equivalent bare core is

Ry + A =52+ 30 = 82 [em]. (B11)

The above figure can be compared to a calculation from another
m s . (B6) h 2t rranh

source. The radius of bare sphere for a U235-Craphite

reactor without void is approximately €0 cm for a critical

mass of about 20 to 40 ke of U235. The equivalent radius with

20% void is about €6 cr,

s
} Usin~ the formula for %uckling in spherical geometry*B7)
i we have
m =4 -
‘ P2 =(-T_y2 = 15x107" [ern”°7 . (B12)
|

. . . . B
I The dimensiocns of a cylindrical core( & for the same buckling

, are related as

2.405
B2 = ( T_y2 s (;;122)2 (B13)
L+AH 5+Xr ’
where H = heirht of the cylinder |

R = radius of the cylinder,

A_ = thickness of reflector in radial direction,
and ., = thickness of reflector in axial direction.
Assuming that the heisht of the reactor is equal to the diameter,

Eguation (B13) becomes

.. T 2
4ds (2 _ (2 4 (2.u05)2
4+ 2 (R +').r)2




———

Equating the buckling for both geometries we obtain

T r

R fv P4
S r r

lie

Substituting the gquantity civen in Eq. (B1ll) into the above

equation one obtains

R+24,=82x 0.913 2 75 [cem] ,

and

R=75-30=45[em] = 1.5 [ft]

Thus the core of a reactor in cylindrical shape with 20% void

is 3 ft 1in diameter and 3 ft in height without including

relflector thickness.

(b) The Relationship between Void ¥raction and Buckling.

Since the aensity of hydrogen is small in comperison with

that of carbon, Eq. (25) is approximated as

8,
~(1~c)pc

DR

or

bl'b|o|
0 ¢

Therefore, for different void fractions, the average density

carbon, can be obtained:

—t = 0 . (BlS)

= (1-g) . (B14)



Because both reactors are in critical condition, we have

R2 2 2
Toﬁo - °o Bo v
2—(‘:> )(E") = 1
T B Co
where 1 = Ferml age < (7:)—2 (B7), (B16)
AY
I = Macroscopic cross section = p(B7).

Then the relation between the buckling and vold fraction is

obtained
B °c 1-
£t - ——l_f; . (B17)
0 P oo o

With Equation (B12), one has

(R+A)O . (RS+)\)O )

B
R+ RS+A BO 25

(B18)

For instance,., changing the void fraction ¢ from 0.2 to 0.3

we have
- - 007
YT s 0.5
or 0.8 0.8 o
= - = { —— = 5 T
R+A (R+A)o 07 75 x G 55.5 [en].
Thus, R = 85.6--30 = 55.6cm = 1.8[ft] for core only-

(¢c) Calculation of Fuel Element
The thickness of fuel plates can be calculated by the
following assumptions.
(i) The number of channels is 212,
(ii) The void is 20% ,
(iii) The cross-sectional area of the reactor, 3 ft 1in

diameter, is equivalent to a square, 2.66 ft ¥ 2.66 ft.




(iv) The width of fuel plates is 2.65 ft.
If the thickness of fuel plate is 2b and the width of coolant

channel is d, the cross-sectional area of the reactor 1is

(2.66x12) (2b+d)212[1n%] = (2.66x12)°[in2], (B19a)
and the vold of the reactor is

ax2.66x12
(2b+d)x2.66x12

= 0.2. (B19b)

The solution for 4 and b are thus

d

0.03[in],

and b

]

0.06{in].
The 0.12 in fuel plate is within the range given by M. M. Leroy
(B8)

and J. J. Newgard in "Rocket-Reactor Desizn.”

(@) cComputation of Hydrogen Flow at Full Power

The hydrogen temperature at exit is assumed to be 4,500 k.

If the inlet temperature of hydrogen is taken as 180°R and the
total power of the reactor 106Kw, we can calculate the hydrogen

flow rate per channel from the relation

P, = Eg(212)W(&500—180), (B20)

L

where Eé = average specific heat of hydrogen per channel,

{BTU].
Sec

P, = full power = 10° XKW = ©.5(10)°

Thus, W = flow rate of hycérogen per channel

50
212

e

= o.283[%§§

(e) Computation of Maximum Temperature at ¥ull Fower
The highest temperature of fuel plates under steady-

state conditions is at the exit with the reactor at full power.




Thus the following relation can be obtained from Equations

(3.11a) and (3.11b)

5%10° BT
where P = & = 2:5%10 ¥ 5 gx10d BTV §
° ¥ ft.3Sec

v %(3)2x3x0.8

<
i

v
b = 0.06 [in] = 0.005 {ftl.
and hO = heat transfer coefficient .

(R22)

volume of carbon-uranium = %(3)2x3x0.8 [(f£t37 ,

The heat transfer coefficient ho is evaluated by the following

equations.(BS)
v WD
P = Vp?,‘Dii . .U"H
2. u uA 3
X1
. L 0.8 - 3
hu = 0.023(Re) (‘r) »
N k
and h = g ,
NS dl‘i
where Fe =Reynolds number ,

velocity of hvdrogen .,

<
i

density of hydrogen ,

©
i

W = vp A = mass flow rate of hydrogen

te

am 1bm
Sec] = 0.283 [% Secd

>
i

=
t

= dg ¥ 0.96[in%] = 6.2 [cm?)

cross-sectioral area of coolant channel

average viscosity (210)x 214 1076 &7,
Cm Sec




D
o = ! Wetted area = (1) 2 ¥ g
h Wetted Perimeter D =
= 0.06[ir] = 0. 152[Cm] .
Nu = Nusselt no.
Pr = Prandtl no. = 0.66 for hydrogen (B9) 5
k = average heat conduction coefficient of hydrogen(Blo)
- ~5_ BTU
¥ o1uxio7s-B8L 1 ¥ g 76x107 [—— T .
siec cmX: s.ec ftO!
From Equations (B23) and (B25), we have
I
Re = 1. 4x10’ at full power ,

n,

and Nu = 42 .
By using Equation (B25) and the values of Nusselt no. and k
we obtain

BTY

2 0.82 T ] at full power.

Sec ft20R
Thus the maximum temperature of the fuel plate can be evaluated

from Equation (B22)

_ _ Pob _ 5.6x10%x0.005
Toal w=0 =B * Tas| ,_,,= 0.82 + 4500
Loy “=22 e} Z =
}
= 342 + U500 = 4842 [°R]

The above calculation shows that the highest temperature of

the fuel element is less than the designed melting point of car-
bon. The actual melting point of carbon is about 6850°R (B11)
(B4)
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(B4)

(B5)
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2nd Inter. Conf. Peaceful use Atomic Fnergy, Geneva 12
p/2408. 632 (1958).
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ket Engine” Ph.D. Thesis of MIT 19€0.
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c

Newgard, J. J., Levoy, si t
ket” Nucl. Sci. and Eng. 7,377-387

VO
Design of Nuclear Ro
1960.

Etherington, H., "Nuclear Eng. Handbook” McGraw Hill,
1958 p 10-55 p 10-19, 10-57.
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(b) net energy flow into the control volume per unit time due
to the fluid flow,

2

BTU
9z (5ec

2 5
ve)laz Sec

[p Av(u +
28

(e¢) Work done to the control volume per unit time due to
change of pressure and density,

BTU
[Sec]

(d) heat input into control volume per unit time from the

boundaries,

BTU]

Dazh(Ty - Tg) &g

Equating the rate of change of enercy to the sum of the

other energy rates, i.e., (a) = (b) + (c¢) + (d), we have

A 3%[pg(u+ Zy2) 1+ ——[AVp (ut _v2+ E—)] = Ph[Ty-Tgl. (C1)

°g
Let Av =W(%) 1 v2<<u .
pg F) 2 >
= X i . T E—- = -
u CV(TG *Go)’ and u + oo cg(TG TGo)
where qu = reference temperature
we obtain
a ——
ACy 35(p,Tg) *+ C h@)az @ = DhLT,-T.]. (c2)

Reference for Appendix C.

(C1) J. F. Lee, F. W. Sears, "Thermodynamics" Addison -

Wesley Publishing Co., Inc. 1959.




Arpendix D Transient Solutions cof Heat Transfer
Probler by One-Dimensional Approach

By the introduction of the following variables

Fquations (3.132) can be transformed into

B(E) [T (B,2,8)="c(2,8)] = Po-22T (0,7,t) (Dla)
2 o(r,e) = BB (b,7,6) - T (7,61 (21b)
YA ("T ,v 3 e « -4
with the boundary condition
IIG(Z,t) 7=0 B TGO 3 (D2)
and the initial condition
=
Tv(b,z,t)' = T, * §°b + @obz . (D3)
s t=0 - o o)
= h nad W = W
where ho Dig=o) a7 W (t=0)
Applying the Lapliace transform in 7, and defining
(h,_,t) = LIT.(b,2.t) ],
and
To(s,t) = LITe(7,8) 1,
we obtain,
, Pb I
sTa(s,8)-T,(0,8)= B(E)[T(b,%,t)-T,(s,t)], (Dib)
With the initial condition
iy +
T.(b,s.t) = 204 (o) B (D5)
- t=0 s o .




[ .

Equation (DUb) gives the fcllowine relation

= B(t) | i 7

Substituting the above equation into Equation (DUa) gives

3. . sh:{t) C - h{E) o . ... Pb Siva

atTU(bs°5t>+ mj‘ TtT(Q,u:t) = S+B(‘,CTTG(O,U)+ S (RN

The solution of Equation (D7) is

JE P e,
- STELE rrh(t) Po. . OTNE “go , s+Poy2,
‘ - O . v -’ 2 S O
!
(D8)

If h(t) = constant and B(t) = constant, then the above equa-

tion can be readily integrated

hs ‘
T s+
+f Pb s+ © s+fo P
T (b,Sst) = »;l-L‘-F S__r ..}:[ R L ]e . (39)
17 S C 251 - h 2 ¥
- E g 5 c
Substituting into Zquatiocn (D6) zives
hs Y]
-l t - 1_}
5 S+8 S+R
T (s,t)= 27 4+ 2 2B _BPb L(8-Bo)Pcy 1
- VT g e T —
hS__ _ hs .
BOPq,, 1 . s+P {B-80)Ps. 1 “S¥8 ¢
ks h = @ + L —— . n
TROP TS oh s (D10)
o} g2 )

The inverse Laplace transfornm of Tquations (Do) and (D10)

involves the determination of the followire functions:

i hst hét
R s+p _ ~ht -1, 1 s+27
(a) L r;—;—e ] =e L LEIEC 1, (D11)
hs, hét
- a4 - ~he L -
(b) TTHZ e STy = oIl o oAy (P12)




Q“t
() L7llpe S*E Tya Ol o SRy L ()

The above functions can be written in the following form

a
R{(s) = _——}_I_n- e ste s (o1d)
(s+y)

where a proper choice of m, a, and Y represents either Eguation
(P11), (D12) or (D13). Thus if the inverse of Ecuation (D14)
is known, we are able to obtain the inverse of Equations (D11),

(D12) and (D13). The inverse of Equation (D14 is derived as

follows:
_a e .
e I = L B e I EIEPR S £g(c)f(7—c)dc ,
(D15)
where  G(s) = ££ (D16)

g(2) = L7H6(s) - LT - LB = s(0) - (y-8 )eTVE,

Ty
(D1T7)
_a_
- _ 1 3+8
F(s) = 538 © , (D18)
a_ a
- o BT -
and f(z) = L lF(s) =L lgig 5By = o “BLg l[% e®1. (D19)
By applying series expansion to Ecuation (D19) we have (b1)(n2)
(D3)
?_. © (_%)F 0 {{l -
I S I A D I M- e
S =0 r! n=o0 nt SO
°3 a:h gl”. f°(v/§:—i)2ﬂ
=) &= = ) =1 (23T) . (Dp20)
ns n! tdedls O
n=o n=o0
thus ~R f—
flz) = e ~CIO(2» ac). (D21)




Substituting Equations (D17) and (D21i) into Equations (D15)

gives
a Z
LS = | Lo -(v-82e7 027 E P12/ R e
(o]
- BZ —e7f 7 - (¥-8)Lo ., STEIESVa.
= e IO(2 @)_(Y—B)e e : .LO'\C Va\l.v“i://\.‘f..a
© (D22)

Let 2 Ya(Z-t) = &, one then obtains

. 52 as
L = o - T3 and d4dz = - 53 - (D23)
Applying this change of variables to Eguations (D22), we have
a_
-1, 1 s+84 _ _-BI_ Ve
L [s+Y e ") = e LO(Z /az)
-2
-BZ o ‘(Y*S)(»‘ﬁg) .
+ (y-8)e ( e 25 To(8) gk
|2vaz
87 By) 77{2 az -l g2
= e IO(?‘/-&—Z) + "*2—,_—6 e : gIO(E) ag-
Jo
(D24)

To evalute the integral in Equation (D24), relations between

the modifiec Bessel functions are neecded. The integral rela-

tion is derived from the recurrance formulze as follows(DL)(DS)

5 @ = (
2 37 Tnep(0) = Ip(e) + I,,..(0), (D25a)

T (g) - T . (g) = @) g

)
m m+2 £ m+l(g) : (D25b)

Solving for I (£) from Equation (D25b) and substituting into

m+2
Fquation (D25a) gives

a T Eil - {
GF Lgpa(8) + == I (e) = T 08). (D26)

il




e . R

Multiplying €m+l in the above equation, we obtain

m+ld m m+l
—_ = T 2
£ ngm+l(£) + (m+l) e Im+l(g) £ _m(E) ;

m+11 8 . (D27)

-
[4/]

»
(s} el

m+l _
3t Le Im+1(5)] =
Therefore, the integral relation of Modified Bessel functions
is

mAlo oy mbl (n28)
[a I coae = 1 co) .

Applying the above integzrsl relation to Equation (D2#4) and

integrating by parts gives

a
-1 -1 s+84 _ .~ BZ
L 557 ¢ ] = e 10(2/57)
~B=Y ) /o (273l y g:lzz
s - A CJ;') Z o -
- C
"o
= e %1 (avam) + £ e TVi(2vaT 1 (270 8TV
oy 2 _yz |20 Sl Y
+ (5= e £21_(¢g)e @
za a
= e _(2vam) + ¥ (s-v) ([D1,(2vED)
. 2 ¥y -.__.B_.__'j_{;?
+ (570 e‘Y“(z g2 1.(8)e B ar

e}

-R7Z > o2
e™FLei (2/38) + (o) ({01, (270) + {(suy%ﬁgz I (2/E7)+. ..

1}

5“25(8 Ylj“l I_(2/3) . (D29)
n=




-

Differentiating the above equation with respect to y. we have

a

1. 1. 584 _ =Bt T .. nlJ:P = ,
L lginee” 1 =e nzln(s N T (2/82),  (D30)

If this differentiation is applied (m-1) times_  one obtains

a

L_l[___]_____es+

~ -t P ni n-m+l,{7.\n —
=8 —— (B-¥) (J-:;) I (2VaZ)
(s+y)m z in~m+1)! a n

nEmes (D31)
Applying these derivad inverse formulae to Ecuation (D10)

gives Equation (32.22a2) 1in the text.
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References for Appendix D

(D1)
(D2)

(D3)

Journal fur "ath. LXIX¥., (18488) p. 227.

Churchill, . V., 'Operztional ™athenatics T'clrawvy-Till
1953,

Brown % i'ilsson. Introduction to Linear Systems Analysis
Wiley 19€2 p 36G0.

“fatson, . .. & Treatise on the Theory of Bessel
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Apvencix £  mrensient Sclutions bv Terturbation
The perturbed temperatures of fuel and coolant are given

in Fquatiors (3.23) an¢ recszted here for convenience.

520, (2.2.8) = = n [T (6.2 8) - T_(28)]=b(P,P) (F1)

us - o-"u e 0
ar - - m « m rd =
'5—,5.'7(4;;(3) = Bo[.,.u(t‘ Z u) - T (7 t)], (»-12)
with bouncary conditicr
T (2,%) =0 (73)
p 7=0
anc the initial condition
T, (0.2 t) = 0 (Fia)
v t=0
or T (Z.%) =0 , (Eln)
‘ 7=0

The zbove zero initial concition simpiifies the follovwing

Laplace transfor in t

= - ™~ [ . m ” 2 -PY Y
pT,(b,Z p) = = h 7 (b 2.7) - T (2 p)] - [P -P), (E32)

2

570.(2 P) = B, [T, (0.7,p) - T (7 p)] . (E5b)
with the boundary concition
T.(Z.2) =0 (£6)

vhere

anc T (Z.n) =L{" (7,t)] .




The sclutions

Transform Cperator
T,(Z2.0)

2
and T,(b,2.0)

Using the rzlation

7,(0.7.

we ottain

TU(b,Z.p) =

‘HH

r{‘.

Ipplyine

derivecd in Enrendix

7.(b.7,t) =

-8 T h
e ©

the inverse

02 (n

of Tcuztion (F5) in terms of the Laplace
D 2are Bop

-
(P _p) p+ho“
- ———Ez——(l*c ) .

1]

(%72)

BOD

b P _-®) CPHRSC B(P-P)
Fe(pen gy (L

1§
H

> b - p4+h
+ -0 (1ve0 )] - :%§¢TE%E—~<1~e ° )41

c
(£°)
L.anlace tr:nsform for onerator P

- S <
L TIVES

- Pob o}

T4 L2 ieg 7 . =(Ppo P t
o}

L

n S
DG (278 TnE)] . ()
n=1 o

te



Appendix F General Fauations for Thermal Stresses

The basic differential equations for the linearly coupled

R (F1)
thermoelastic theory are
3T . 3 ,3U A oW
kv2T+P = pc2T & (3 (3 EY o, Wy F
VETHP = pCxp + (3a+2u)aT 3x(5% + 57t 32 (F1)
' —-a—o' +—-a—o' + —q = azu 3
| X XX 3y "Xy 3z Xy patz ?
i 2
3 3 3 eV
— + —— — =
axoxy aygyy * 3z 0yz DBLZ : } (F2)
v
—0 —-io +—io =~—2-32W /
: X X2 3y vz 3z zzZ th 3
! vl E
wh = =
, where ST N o-rv LT Y 6 £y B
! E = Young's modulus,
v = Poisson's ratio,
}
T = temperature distribution,
’ TO = reference temperature for which the material is
stress-free,
‘ o = stresses,
} u,v.w = displacements in x, y, z direction, resvectively,
| a = coefficient of linear thermal expansion,
} p = density,
; C = gpecific heat,
P = heat generated per unit volume per unit time.

The heat conduction equation, Equation (F1), is coupled with




~y 3

-

;-

the equilibrium equation, Equation (F2). This coupled bound-
ary value problem is of considerable mathematical difficulty.
Fortunately, in engineering applications, i1t is possible to
introcuce certain assumptions to simplify this problem. The
principal simplifications are the omission of the mechanical
coupling term in the heat conduction equation and the inertia
terms in the equilibrium equations. Usually, the theory based
on none of these simplifications is called coupled thecory. The
uncoupled theory is based on an approximation which omits the
mechanlical coupling term in the heat conduction equation whereas
the uncoupled quasi-static theory omits both the mechanical

coupling and inertia terms.

Reference for Appendix F.

(F1) Boley, B. A., Weiner, J. H., "Theory of Thermal Stresses”

John Wiley & Sons, Inc., 1960.




L
Appendix G Thermal Elasticity
For the quasi~static three~dimensional thermal stress
problem in rectangular coordinates the three equations of
equilibrium with no body forces are(Gl)(Gz)
3 3 ]
3% %xx T 355%y t 32 Oxz T 0,
3 3 8 -
i 3x°xy T 3y %vy 32 %z T 0 ‘ (G1)
}
and 3 3 2
| e b el o
} X Xz + 3y yz 3z 22
These equations, containing six components of stress oxx ’
Oxya..., dzz’ are not sufficient for the determination of these
~components. In orcder to obtain the solution we must conslder
the elastic defcriations and the thermal expansions of the body.
) By using dooke's law, the six stress-strain relations are (61)
' e = l[c - vio_ +o_ )1 + aT-T)
XX E-"xx vy zz’ - 7o’
€ = l{s - v(is_ +0_.)] + o(P-T)
Yy EtTyy zZZ XX T To’?
L (G2)
= = - g .7
€z = TlOgn~ V0%t Uyy)] * a(TTy),
° ? 4 ze
- XY y - _X2
€xy T ZC €vz T 3G . €xz 20
3
where E = Young's modulus,

G = shear modulus,

e = strain,

T = ‘temperature distribution,
To = initial temperature distributilon,
and a = coefficient of linear thermal expansion.




Xt should be noted that the six
point are completely determined
ponents u, v, w, subject to the

ment relations

U _

£ = 5T € =
XX 3X , VY
Xy 3V 9X , X2

References fcr fppencix G

components of strain at each
ty the three displacement com-

following six strain displace-

v = AW
3y, Ez-z 3z .
(G3)
U oW 3V oW
e a—— = —— +
3z T 3x , Syz T 9z ' v .

(G1) Boley, B.A.. Veiner, J. H.. ‘Theory of Thermal Stresses."
John Wiley & Sons, Inc.. 1960.

(G2) Timoshenko, &., ‘Theorv of Flasticity.' VeSraw-Hill
Book Co., Inc., 1034,
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Appendix H Compatibility Conditions
The strain-disrlacements relations reduce to the follow-
ing six differential equations in terms of strains by differ-

entiating Equation (G3) in Appendix G.

32 a2 32
2txx T Sty T dmayay ]
32 32 _ 22
22°yy T yy2 2z Ayezym ) (Hia)
22, 22 22 J
3x2 ZZ 5,2 XX 3X3Z XZ ,
a2 3 3 )
2ayaz €xx = X" 3% tvz T 3y €x2 t 32 exy)’I
32 _ 9, 3 3 3 l
2 3x37 Sy ~ ay(ax €yz 7 3ytxz + azexy)’ ? (H1b)
J
32 . 3.3 8 .
2ax8y”zz B az(axeyz * ayxz az‘xy)-

By using Hooke's law, the strains in terms of stresses are

sgy = BL(IHV)oy - vals oE(7-T) \
epp = BL(1+v)o, = vel+ aE(T-T ) | ?(H2)
_2(1+y) /
*yz = T E Yzz,
where 8 =og._ +0.  + g

XX vy Y7z
Substituting Equation (H2) into the 2nd relation of Equation
(Hla) gives




2 2 2 2¢
(1+v) (=20 + 25 ) = w(222 4 228
o2 VY ay 2 Z2z 372 ay2
52 32 32
+ aF (2= + =3 (m.m )= 2(1+v)——0 H
aE( "y ayz)(T )= 2l v)ayaz vz (H3)

3
crentiating the second of the egquilibrium eguations fi.e.
Equation(G1)] with respect to z and the third with respect

to y and adding them together, we have

32 3?2 32 3,3 L 9
———C = - e == A HY
2ayaz vz ar‘,zczz ayzcyy ax(azgxy 3y cXy) (Hh)

iy Applyinc the first of the equilibrium eguations, one obtains

2 "2 2 2 L
2= ~c__ = - g ~’—é-07 T (H5)
IYyAZ yZ 322 ZZ ayz ¥y 3X2 XX

Substituting Equatiorn (HS5) into Egquation (H3) we have

2 n2 2
220y ev(v20- 8y = - aE(v2. E)(T-T).

(1+v) (V29 - V25 -~ -
x2 3x2 3x2

XX

2

(H6)
Two analogous equatiens can be cobtained from the other con-
‘ ditions of compatibility Fquation (Hla). Adding all three

| equations gives

(1-v)v2p = - ZuEvz(T_TO), (HT7)

Substituting the above into equation (H6) one: obtains

1+y

320
H 1~vv

+v)92 L %8 o . 4
(1+v)v Tyx a2 aB(

By changing the subscripts from z to y or z two more equations

n2
24 22y (Tr)), (H8)
3x2

of the same type can be obtained by using the relation given
in Equation (Hla). By a similar procedure three other relations

are derived from Fquation (H1b). One of these relations is

2 2 N
(1+\))V20YZ + 3‘332 2 - aE,a (T—T ) (,(‘,\)




